Seasonal Influenza Forecasting in Real Time Using the Incidence Decay With Exponential Adjustment Model
نویسندگان
چکیده
Background Seasonal influenza epidemics occur frequently. Rapid characterization of seasonal dynamics and forecasting of epidemic peaks and final sizes could help support real-time decision-making related to vaccination and other control measures. Real-time forecasting remains challenging. Methods We used the previously described "incidence decay with exponential adjustment" (IDEA) model, a 2-parameter phenomenological model, to evaluate the characteristics of the 2015-2016 influenza season in 4 Canadian jurisdictions: the Provinces of Alberta, Nova Scotia and Ontario, and the City of Ottawa. Model fits were updated weekly with receipt of incident virologically confirmed case counts. Best-fit models were used to project seasonal influenza peaks and epidemic final sizes. Results The 2015-2016 influenza season was mild and late-peaking. Parameter estimates generated through fitting were consistent in the 2 largest jurisdictions (Ontario and Alberta) and with pooled data including Nova Scotia counts (R0 approximately 1.4 for all fits). Lower R0 estimates were generated in Nova Scotia and Ottawa. Final size projections that made use of complete time series were accurate to within 6% of true final sizes, but final size was using pre-peak data. Projections of epidemic peaks stabilized before the true epidemic peak, but these were persistently early (~2 weeks) relative to the true peak. Conclusions A simple, 2-parameter influenza model provided reasonably accurate real-time projections of influenza seasonal dynamics in an atypically late, mild influenza season. Challenges are similar to those seen with more complex forecasting methodologies. Future work includes identification of seasonal characteristics associated with variability in model performance.
منابع مشابه
Forecasting Peaks of Seasonal Influenza Epidemics Œ PLOS Currents Outbreaks
We present a framework for near real-time forecast of influenza epidemics using a simulation optimization approach. The method combines an individual-based model and a simple root finding optimization method for parameter estimation and forecasting. In this study, retrospective forecasts were generated for seasonal influenza epidemics using web-based estimates of influenza activity from Google ...
متن کاملRelatedness of the Incidence Decay with Exponential Adjustment (IDEA) Model,"Farr's Law"and Compartmental Difference Equation SIR Models
Mathematical models are often regarded as recent innovations in the description and analysis of infectious disease outbreaks and epidemics, but simple models have been in use for projection of epidemic trajectories for more than a century. We recently described a single equation model (the incidence decay with exponential adjustment, or IDEA, model) that can be used for short term forecasting. ...
متن کاملA NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES
In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...
متن کاملEvolution-informed forecasting of seasonal influenza A (H3N2).
Interpandemic or seasonal influenza A, currently subtypes H3N2 and H1N1, exacts an enormous annual burden both in terms of human health and economic impact. Incidence prediction ahead of season remains a challenge largely because of the virus' antigenic evolution. We propose a forecasting approach that incorporates evolutionary change into a mechanistic epidemiological model. The proposed model...
متن کاملForecasting Influenza Epidemics in Hong Kong
Recent advances in mathematical modeling and inference methodologies have enabled development of systems capable of forecasting seasonal influenza epidemics in temperate regions in real-time. However, in subtropical and tropical regions, influenza epidemics can occur throughout the year, making routine forecast of influenza more challenging. Here we develop and report forecast systems that are ...
متن کامل